足球游戏_中国足彩网¥体育资讯$

高考数学中曲线本身的对称问题
来源:易贤网 阅读:1556 次 日期:2017-04-06 15:41:49
温馨提示:易贤网小编为您整理了“高考数学中曲线本身的对称问题”,方便广大网友查阅!

曲线本身的对称问题

曲线F(x,y)=0为(中心或轴)对称曲线的充要条件是曲线F(x,y)=0上任意一点P(x,y)(关于对称中心或对称轴)的对称点的坐标替换曲线方程中相应的坐标后方程不变。

例如抛物线y2=-8x上任一点p(x,y)与x轴即y=0的对称点p′(x,-y),其坐标也满足方程y2=-8x,`y2=-8x关于x轴对称。

例3 方程xy2-x2y=2x所表示的曲线:

A、关于y轴对称 B、关于直线x+y=0对称

C、关于原点对称 D、关于直线x-y=0对称

解:在方程中以-x换x,同时以-y换y得

(-x)(-y)2-(-x)2(-y)=-2x,即xy2-x2y=2x方程不变

`曲线关于原点对称。

函数图象本身关于直线和点的对称问题我们有如下几个重要结论:

1、函数f(x)定义线为R,a为常数,若对任意x∈R,均有f(a+x)=f(a-x),则y=f(x)的图象关于x=a对称。

这是因为a+x和a-x这两点分别列于a的左右两边并关于a对称,且其函数值相等,说明这两点关于直线x=a对称,由x的任意性可得结论。

例如对于f(x)若t∈R均有f(2+t)=f(2-t)则f(x)图象关于x=2对称。若将条件改为f(1+t)=f(3-t)或 f(t)=f(4-t)结论又如何呢?第一式中令t=1+m则得f(2+m)=f(2-m);第二式中令t=2+m,也得f(2+m)=f(2-m),所以仍有同样结论即关于x=2对称,由此我们得出以下的更一般的结论:

2、函数f(x)定义域为R,a、b为常数,若对任意x∈R均有f(a+x)=f(b-x),则其图象关于直线x= 对称。

我们再来探讨以下问题:若将条件改为f(2+t)=-f(2-t)结论又如何呢?试想如果2改成0的话得f(t)=-f(t)这是奇函数,图象关于(0,0)成中心对称,现在是f(2+t)=-f(2-t)造成了平移,由此我们猜想,图象关于M(2,0)成中心对称。如图,取点 A(2+t,f(2+t))其关于M(2,0)的对称点为A′(2-x,-f(2+x))

∵-f(2+X)=f(2-x)`A′的坐标为(2-x,f(2-x))显然在图象上

`图象关于M(2,0)成中心对称。

若将条件改为f(x)=-f(4-x)结论一样,推广至一般可得以下重要结论:

3、f(X)定义域为R,a、b为常数,若对任意x∈R均有f(a+x)=-f(b-x),则其图象关于点M(,0)成中心对称。

中国足彩网信息请查看高考
易贤网手机网站地址:高考数学中曲线本身的对称问题
由于各方面情况的不断调整与变化,易贤网提供的所有考试信息和咨询回复仅供参考,敬请考生以权威部门公布的正式信息和咨询为准!

2025国考·省考课程试听报名

  • 报班类型
  • 姓名
  • 手机号
  • 验证码
关于我们 | 联系我们 | 人才招聘 | 网站声明 | 网站帮助 | 非正式的简要咨询 | 简要咨询须知 | 新媒体/短视频平台 | 手机站点 | 投诉建议
工业和信息化部备案号:滇ICP备2023014141号-1 足球游戏_中国足彩网¥体育资讯$ 滇公网安备53010202001879号 人力资源服务许可证:(云)人服证字(2023)第0102001523号
云南网警备案专用图标
联系电话:0871-65099533/13759567129 获取招聘考试信息及咨询关注公众号:hfpxwx
咨询QQ:1093837350(9:00—18:00)版权所有:易贤网
云南网警报警专用图标